Cell Bio Post-Exam 3 Information

- Basic Food/Energy Info:
 - Carbon compounds release energy when oxidized
 - \circ <u>Calorie</u>: amount of energy needed to raise 1g of water by 1°C
 - Food labels are marked in kilocalories
 - o Glucose is the main form of stored energy in the body
 - Conversions of glucose:
 - 1. $CO_2 + H_2O + energy$
 - 2. Lactate + energy (pathway used in the absence of oxygen)
 - 3. Stored as glycogen in muscle or liver tissues
 - 4. Fat pathway
 - Energy released through its oxidation
- Energy and Reactions:
 - Free energy change determines reaction spontaneity (negative value = spontaneous reaction)
 - Still requires a sufficient level of activation energy
 - Cellular energy is carried via molecules like ATP or electron-carrier molecules (NADP+/NADPH, NAD+/NADP, FAD+/FADH₂)
 - More inorganic phosphates = more energy available in molecules like ATP
- <u>Glycolysis</u>: metabolism of glucose into pyruvate and energy-carrying molecules
 - Basics of Steps:
 - Step 1: glucose phosphorylated by <u>hexokinase</u> enzyme into glucose 6-phosphate
 - Step 2: glucose 6-phosphate rearranged into fructose
 - Step 3: fructose phosphorylated into fructose 1,6-bisphosphate
 - Steps 4-5: modified fructose broken down into two <u>glyceraldehyde 3-phosphate</u> molecules (3 carbons apiece)
 - Step 6: Glyceraldehyde 3-phosphate is oxidized and phosphorylated while NAD+ is reduced to NADH
 - Step 7: ADP molecule phosphorylated to ATP
 - Steps 8-9: Phosphate on main molecule moved and H₂O is released
 - Step 10: Pyruvate and ATP are produced
 - Occurs in the cytoplasm
 - Overall reaction: glucose + 2NAD⁺ + 2ADP + $2P_i \rightarrow 2Pyruv. + 2NADH + 2ATP$ (net)
 - 4 ATP total are produced (2 per glyceraldehyde 3-phosphate molecule) for a net gain of 2 ATP
 - Also known as substrate-level phosphorylation
- Pyruvate after Glycolysis:
 - Can enter the citric acid cycle if oxygen is present (see later notes)
 - Will be <u>fermented</u> if oxygen is not present
 - Yeast fermentation:
 - 1. Pyruvate converted into acetaldehyde and CO₂
 - 2. Acetaldehyde converted into ethanol and NADH oxidized to NAD+
 - Muscle fermentation:
 - 1. Pyruvate converted into lactate and NADH oxidized to NAD+
 - <u>Gluconeogenesis</u>: regeneration of glucose from lactate
 - (Is the other half of the <u>Cori cycle</u> of glucose breakdown and reformation)

- <u>Citric Acid Cycle</u>: production of electron-carrier molecules through the oxidation of <u>Acetyl CoA</u> and <u>citrate</u>
 - Basics of Steps:
 - Before Cycle: Pyruvate is oxidized into Acetyl CoA and CO₂; NAD+ is reduced to NADH
 - Step 1: 4-carbon oxaloacetate and Acetyl CoA oxidized to citrate, releasing H₂O
 - Step 2: Citrate rearranged
 - Step 3: Rearranged citrate molecule oxidized to a 5-carbon molecule and CO₂, NAD+ reduced to NADH
 - Step 4: 5-carbon molecule oxidized to a 4-carbon molecule and NAD+ reduced to NADH
 - Step 6: 4-C oxidized and GTP produced
 - Step 7: 4-C oxidized again and FAD reduced to FADH₂
 - Step 8: H₂O added to 4-C molecule
 - Step 9: 4-C oxidized to oxaloacetate and NAD+ reduced to NADH
 - Occurs in the mitochondrial matrix
 - $\circ \quad \underline{\text{Overall Reaction: Acetyl CoA + oxaloacetate + 2H_2O + 3NAD^+ + FAD + GDP + P_i} \rightarrow 3NADH + FADH_2 + GTP + 2CO_2 + oxaloacetate}$
 - Electron carrier molecules are fed into the electron transport chain
- ATP Production:
 - <u>3 components of the chemiosmotic hypothesis</u>:
 - High-energy electrons
 - Electron transport system producing a H⁺ gradient
 - ATP-synthesizing enzyme (<u>ATP synthase</u>) using energy from the H⁺ concentration gradient
- <u>Electron Transport Chain</u>: series of inner mitochondrial membrane enzymes utilizing high-energy electrons to create a H⁺ gradient across the membrane
 - Proteins in the ETC and functions:
 - First enzyme (NADH dehydrogenase complex) oxidizes NADH to NAD⁺
 - Ubiquinone carries electrons to next enzyme (cytochrome b-c₁ complex)
 - Cytochrome c carries electrons to next enzyme (cytochrome c oxidase)
 - 1. H^+ and O_2 reduced to H_2O
 - 2. All enzymes participate in the creation of the hydrogen ion gradient
 - 3. Acetyl CoA gets into the matrix via <u>symport transport</u> with the hydrogen ions (also inorganic phosphates); called the <u>proton-motive force</u>
 - \circ ~ Voltage gradients drive the exchange of ADP and ATP ~
- <u>Photosynthesis</u>: $6CO_2 + 6H_2O + energy \rightarrow glucose + 6O_2$
 - Energy comes from sunlight
 - Carbon is fixated to its lowest energy state by the Dark Reaction/Calvin Cycle
 - <u>Net Reaction</u>: 3CO₂ + 9ATP + 6NADPH → glyceraldehyde 3-phosphate + 9ADP + 6NADP⁺ + 8P_i
 - Key enzyme of the reaction is <u>ribulose bisphosphatase/Rubisco</u> (need a lot of it because it is inefficient)
 - Occurs in chloroplasts
 - Photosystems make up the Light Reaction
 - Photosystem II: light and a water-splitting enzyme split 2H₂O into O₂ and 4H⁺; highenergy electrons extracted by a carrier molecule
 - Cytochrome complexes use energy from electrons to drive proton pumps

- Photosystem I: light excites electrons again and they are donated to NADP⁺ to produce NADPH
 - 1. NADPH molecules will be utilized in the fixation of carbon/Dark Rxn.
- Viagra Dog:
 - Two cells involved in the erection pathway:
 - Endothelial/neuronal cell
 - Smooth muscle cell
 - Basic steps:
 - NO serves as the <u>first messenger</u> in the signal transduction pathway (activates guanylyl cyclase enzyme)
 - Guanylyl cyclase activates cGMP which serves as the likely second messenger in addition to Ca²⁺
 - cGMP Activates PKG (phosphoprotein kinases) molecules
 - PKG molecules can cause relaxation or contraction of myosin light chains
 - Effects:
 - Vasodilation: constriction of veins restricting blood flow out of an organ system
 - Viagra causes vasodilation because it is a PDE-5 inhibitor; PDE-5 degrades cGMP. The degradation of cGMP initiates the process for relaxation. Inhibiting the degradation of cGMP therefore causes vasodilation to continue.
- Signaling Molecules:
 - \circ Three ways they work:

- Activate enzymes in cell directly
 - 1. Ex. NO gas in vasodilation (see Viagra Dog)
- Bind to <u>intracellular receptors</u> (protein receptors inside the cell in question)
- Bind to <u>plasma membrane receptors</u> (protein receptors located on the plasma membrane of the cell)
- Three types of cell surface/plasma membrane receptors:
 - ion channel-linked receptor: signaling molecule opens an ion channel in the plasma membrane
 - <u>G-protein linked receptor</u>: signaling molecule activates phosphorylation/activation of a GTP-binding protein acting as a molecular switch
 - 1. GTP-binding proteins are monomeric or trimeric
 - 2. Activated G-proteins may open/close ion channels OR activate enzymes that produce <u>second messengers</u>
 - Sometimes activated trimeric G-proteins dissociate into subunits that have different functions (called alpha and beta-gamma subunits)
 - Some important second messengers are <u>cAMP</u> (cyclic AMP) and Ca²⁺
 - ✓ Can activate cAMP-dependent <u>protein kinases</u> (proteins that phosphorylate molecules)
 - <u>Enzyme-linked receptor</u>: signaling molecule binds to a protein with a catalytic domain or an associated enzyme activated by molecular binding
 - 1. Pathways often utilize phosphorylation using protein kinases or phosphatases
 - 2. Three main examples:
 - > <u>Tyrosine kinase receptors</u> binding growth factors

- Tyrosine-kinase associated receptors binding immune signals (cytokines, interferons, etc.)
- Receptor serine/threonine kinases binding members of the transforming growth factor family
- Four Main Signaling Systems (Integrated Examples of Signaling Molecules and Pathways):
 - <u>Neuronal signaling</u>: localized release of neurotransmitters
 - Is a type of cell surface/plasma membrane receptor signaling
 - Ex. Acetylcholine and the heart
 - 1. Parasympathetic nervous system causes the release of acetylcholine
 - 2. Binds to muscarinic receptors on cardiac smooth muscle cells
 - 3. G-protein activated and dissociated into subunits
 - 4. Beta-gamma subunit opens a K+ ion channel that hyperpolarizes the cell and slows the heartbeat (Toxin questions could come from this)
 - Endocrine signaling: signaling via hormones & global blood system
 - Is a type of intracellular signaling
 - Ex. Testosterone
 - 1. Produced by the testes (especially during male puberty)
 - 2. Binds to testosterone receptors in cells which activate and enter the nucleus
 - 3. Binds to DNA and acts as a gene regulatory protein which causes transcription of "male" genes
 - 4. Leads to development of secondary male sexual characteristics (What happens if there is no testosterone receptor? Female secondary sexual characteristics)
 - Ex. Cortisol
 - 1. Corticosteroid hormone involved in the response to stress (increases blood pressure and blood sugar levels; suppresses immune system)
 - Hydrophobic hormones are signaling molecules that bind to intracellular receptors
 - <u>Paracrine signaling</u>: local neighborhood signaling via generalized release of molecules in an area
 - Is an example of enzyme-linked signaling
 - Ex. Platelet Derived Growth Factor (PDGF)
 - 1. Binds to tyrosine kinase receptor and stimulates catalytic activity
 - 2. Ras eventually activated and causes GTP to bind to G-proteins
 - 3. Activates MAP-3K that phosphorylates MAP-2K and then MAP-K
 - 4. MAP-K causes many responses eventually leading to binding of a gene regulatory protein to DNA
 - <u>Contact-Dependent signaling</u>:
 - Ex. Developing nerve cell inhibits nerve cell development in cells contacting it